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Abstract: This study presents an analysis on Visual Evoked Potentials (VEPs) recorded mainly from the occipital 
area of the brain. Accumulation of segmented windows (time locked averaging), Coiflet wavelet decomposition with 
dyadic filter bank and Principle Component Analysis (PCA) of three stages were utilized in order to decompose the 
recorded VEPs signal, to improve the Signal to Noise Ratio (SNR) and to reveal statistical information. The results 
shown that the wavelet transformation offer a significant SNR improvement at around four times compared to PCA 
as long as the shape of the original signal is retained. These techniques show significant advantages of decomposing 
the EEG signals into its details frequency bands. 
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INTRODUCTION 
 

Evoked Potentials (EPs) are the alterations 
derivative of the spontaneous ongoing 
electroencephalogram (EEG) produced by external 
stimulation (e.g., auditory, visual, etc.). They are Time 
Locked (TL) to the presentation of stimulus and 
contained a characteristic pattern of response which is 
more or less reproducible under similar experimental 
conditions (Başar, 1980; Galloway, 1990). In order to 
investigate the brain’s response different tasks and 
events, sequences of stimuli are used, which allows the 
study of different cognitive or sensitive functions, 
states, diseases, etc. Thus, the EPs is an important tool 
in neuroscience. 

VEPs are hardly seen in EEG signals due to their 
modest amplitudes as compared with the base EEG 
signal. Therefore, several trials are averaged in time 
locked with the stimulus in order to enhance the 
response. The contribution of trails are added together 
and accumulation of responses, while the ongoing EEG 
cancel each other’s (Quiroga et al., 2000). The number 
of trials is a very important parameter to care about in 
the experiment. Large number of trials can optimize 
VEP ratio but still there is concern of too large number 
of trials which may result into some disorder due to the 
tiredness. The success of averaged EPs presupposes less 
number of trials and would ultimately allow single trial 
EPs extraction from the background EEG (Quian 
Quiroga, 2000). Researchers have proposed several 
methods for filtering averaged EPs. Starting from the 
last century, most of the approaches involved filter 
design such as invariant Wiener filtering and then 

variant Wiener filtering to optimize the result of 
transient responses (evoked responses) related to 
specific time and frequency locations. The filter is 
based on Fourier transform (sine and cosine signals 
decomposition) so there was always doubt for imperfect 
reconstruction. 

The above mentioned limitations can be resolved 
by using a Wavelet Transform (WT). The WT is a time-
frequency representation proposed first by Grossmann 
and Morlet (1984), which has an optimal resolution in 
both frequency and time domains and has been 
successfully applied to study EEG-EP signal (Bertrand  
et al.,  1994;  Demiralp  et al., 1999; Schiff et al., 
1994). Wavelet analysis allows a selection of window 
with appropriate length but it must be noted that the 
modulation of time by any variable weight can affect 
the spectrum. Real-valued mother wavelets are often 
defined to be symmetric and these wavelet coefficients 
do not carry phase information. Complex-valued Morlet 
(Gurley et al., 2003) wavelets and Gabor filters retain 
phase information. On the other hand, Principle 
Component Analysis (PCA) is also used for EEG 
analysis which capable to enhance Neural Network for 
detection   of   Seizure  and   Epilepsy  (Ghosh-Dastidar 
et al., 2008). PCA with the help of density estimation 
has successfully employed for denoising of multi-
channel EEG signals (Dong and Luo, 2012) and in 
multifocal mfVEPs (Zhang and Hood, 2004). PCA has 
also been applied for VEPs especially for noise 
reduction and separation from EEG background 
(Palaniappan et al., 2002; Sharmilakanna and 
Palaniappan, 2005). 
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Fig. 1: Scalp electrodemap of10-20 stem electrodesmontage 
 

TL averaging technique shows milestones of 
evoked signal but with high frequency, it may lead to 
probable errors due to unclear peak positions and values 
(Turker et al., 2008; Mizota et al., 2007). This study 
presents and applies a straightforward WT and PCA 
denoise on real recorded transient VEPs with 
checkerboard stimulation to overcome this drawback. 
However, to decompose the signal to its frequency 
bands, a comparative analysis of transient VEPs using 
both WT and PCA techniques has been performed. 
Here, the wavelet dyadic filter bank is used to cancel 
unwanted signal (noise) and decompose the signal to its 
detailed frequency bands. The key point in the 
denoising of VEPs with WT is the selection of the 
mother wavelet domain. PCA of multi stages is also 
used to eliminate and denoise VEP signal after TL 
average, since choosing a proper component of the 
signal for which to extract is an important step in PCA. 

Both comparative analysis of WT and PCA shows 
improvement in the VEPs signal. However WT shows 
better SNR improvement compared to PCA. Other 
statistical analysis also revealed that the WT is much 
better than PCA. 
 

METHODS AND EXPERIMENT 
 

VEPs recordings are obtained using pattern 
reversal checkerboard stimulation to the brain from 
normal subjects. The subjects are instructed to focus on 
the red point at the center of LCD screen, 100 cm away 
with temporal frequency of 1 Hz and checkerboard 
resolution of 12×16. Scalp recordings are obtained from 
the visual primary sensory area (Occipital O1 and O2) 
electrodes which are linked to central area (Cz) as a 
reference (Fig. 1). Sampling rate is 1000 Hz and the 
data is pre-processed with band pass filter in the range 
of 0.1-100 Hz and Notch filter of 50 Hz for power line 

noise rejection. EAD-AGC8S Shielded Differential 
Electrode Sintered Ag/AgCl electrodes are used to 
record signals. BioTower-4ERG with 4-channel Bio-
amplifier is used to amplify the signals with 10,000 
time amplification. The data is acquired using OMB-
DAQ-3000 Series 1-MHz, 16-Bit USB Data 
Acquisition Modules. The recording session is 
consisted of 60 stimuli presentations of a total of 120 
reversals. 

Transient VEPs response consists of a sequence of 
different peaks that occurs at constant latency after 
onset of stimulus. VEPs responses consist of first 
negative to appear at around 75 ms (N75), positive peak 
at 100 ms (P100) and another negative at 135 ms 
(N135). 
 

WAVELET TRANSFORMS 
 

The advantage of the Wavelet Transform (WT) 
over Fourier based methods is that the functions 
matched with the signal is not necessarily sinusoidal. In 
fact, there are many different functions as wavelets, 
each one carries different characteristics that are more 
or less appropriate and depends on the application. 
Irrespective of the mathematical properties of the 
wavelet to choose, a basic requirement is that, it looks 
similar to the patterns to be localized in the signal. This 
allows a good localization of the structures of interest in 
the wavelet domain and moreover, it minimizes 
spurious effects in the reconstruction of the signal via 
the inverse wavelet transform (Quian Quiroga et al., 
2001). WT can be expressed as time integrated product 
of a signal using a set of basic functions which are 
dilated (or contracted) and shifted versions of some 
prototype of ‘mother wavelet’. The mother wavelet can 
have different forms subject to certain mathematical 
constraints. 
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Fig. 2: Dyadic wavelet filter bank 
 

The original space of orthogonal wavelet is split 
into a sequence of subspaces and each subspace carries 
a spectrum half the size of the previous (octave-band 
decomposition). Such decomposition is appropriate for 
smooth sequences with isolated discontinuities. 

The j-level orthogonal discrete wavelet 
transformation (DWT) of a sequence is a function of l 
∈{1, 2,…, j} which is given as: 
 

𝛼𝛼𝑘𝑘
(𝑗𝑗 ) = 〈𝑥𝑥𝑛𝑛 ,𝑔𝑔𝑛𝑛−2𝑗𝑗  𝑘𝑘

(𝑗𝑗 ) 〉 𝑛𝑛 = ∑ 𝑥𝑥𝑛𝑛𝑔𝑔𝑛𝑛−2𝑗𝑗  𝑘𝑘
(𝑗𝑗 )

𝑛𝑛𝑛𝑛ℤ               (1) 
 

𝛽𝛽𝑘𝑘
(𝑙𝑙) = 〈𝑥𝑥𝑛𝑛 ,ℎ𝑛𝑛−2𝑙𝑙 𝑘𝑘

(𝑙𝑙) 〉 𝑛𝑛 = ∑ 𝑥𝑥𝑛𝑛ℎ𝑛𝑛−2𝑙𝑙 𝑘𝑘
(𝑙𝑙)

𝑛𝑛𝑛𝑛ℤ                (2) 
 
where, 𝑙𝑙 ∈ {1, 2, … , 𝑗𝑗} 
 
The inverse DWT is given as: 
 

𝑥𝑥𝑛𝑛 = ∑ 𝛼𝛼𝑘𝑘
(𝑗𝑗 )𝑔𝑔𝑛𝑛−2𝑗𝑗 𝑘𝑘

(𝑗𝑗 )
𝑘𝑘𝑘𝑘ℤ + ∑ ∑ 𝛽𝛽𝑘𝑘

(𝑙𝑙)ℎ𝑛𝑛−2𝑙𝑙𝑘𝑘
(𝑙𝑙)  𝑘𝑘∈ℤ

𝑗𝑗
𝑙𝑙=1    (3) 

 
where, 
 α(j)  = The scaling coefficient  
 β(l)  = The wavelet coefficient 
 

The equivalent filter g(j)is often called the scaling 
sequence and h(l)wavelets (wavelet sequences), l = 1, 
2,…., j. 

The orthogonal DWT is implemented using a J-
level octave-band orthogonal filter bank as shown in 
Fig. 2. This particular version of the DWT is called the 
dyadic DWT as each subsequent channel carries half of 
the coefficients of the previous one. 

The wavelet used for the decomposition is Coiflet 
of order 5, which is deemed to be closest in 
resemblance to the signal waveforms under 
consideration. This family of wavelets is built by 
Daubechies at the request of Coifman of order 1-5. The 
wavelet function has 2N moments equal to 0 and the 
scaling function has 2N-1 moments equal to 0, which is 
compactly supported (filter width 6N-1 and filter length 
6N) (Hassoney et al., 2012). 

The conventional method of denoising implies a 
thresholding criterion in the wavelet domain. The signal 

is reconstructed from noisy data by setting wavelet 
coefficients below a certain threshold (hard denoising) 
equal to zero or with the use of a smoother 
transformation (soft denoising) (Donoho, 1995). 
However, this procedure is not optimal for recovering 
the EPs because these wavelet coefficients are of the 
order or even smaller than the background EEG. 
Therefore, instead of using a thresholding criterion, a 
denoising based on the specific time and frequency 
localizations of the evoked responses are implemented.  

For this study, orthogonal coiflet wavelet is chosen 
as mother functions due to their similarity with the 
evoked responses. Following properties that make them 
optimal in signal analysis (Chui, 1993; Cohen et al., 
1992; Unser et al., 1992) see for details) such as nearly 
symmetric, smooth, nearly optimal time-frequency 
resolution and compact support. 
 

PRINCIPLE COMPONENT ANALYSIS 
 

PCA is a powerful data analyzing technique used 
to identify patterns of data by highlighting their 
similarities and differences. It is also used to reduce the 
number of dimensions by compressing high dimensions 
without much loss of data information. Subtracting the 
mean from each of the data dimensions is an important 
step in order for PCA to work properly. The mean 
subtracted is the average across each dimension, so this 
produces a data set whose mean is zero. 

The eigenvectors and eigenvalues of the matrix are 
calculated since they are carries useful information 
about the patterns of the data. The eigenvectors are 
perpendicular to each other, in such away one of the 
eigenvectors goes through the middle of the particular 
points. That eigenvector provides information of how 
these two data sets are related along that line. The 
second eigenvector gives pattern in the data, that all the 
points follow the main line, but are off to the side of the 
main line to some extent. So, the eigenvectors of the 
covariance matrix help to extract lines to characterize 
the data. 

The eigenvalues are quite different values. In fact, 
it turns out that the eigenvector with the highest 
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eigenvalue is the principle component of the data set. 
Some of the information may lost, but if the 
eigenvalues are small, the information lose is less. By 
leaving out some components, the final data set has 
fewer dimensions than the original. 

By considering matrix X to represent the mixture 
signals including VEP, the covariance of matrix x can 
be computed by using following relation 
(Sharmilakanna and Palaniappan, 2005). 
 

𝑅𝑅 = 𝐸𝐸(𝑋𝑋𝑋𝑋𝑇𝑇)                                            (4) 
 
where, E is the orthogonal matrix of eigenvector of R. 
 

𝑌𝑌 = 𝐸𝐸𝑇𝑇𝑋𝑋𝑇𝑇                                                          (5) 
 
VEP signal can be reconstructed from the selected 
eigenvalue by using: 
 

𝑋𝑋 = 𝐸𝐸�⃑ 𝑌𝑌�⃑                                              (6) 
 
where, E��⃑  and Y��⃑  are eigenvectors and principle 
component, respectively. 

 
RESULTS 

 
Time Lock (TL) averaging, wavelet analysis and 

PCA of the evoked EEG are computed for occipital 
channels. Typical waveforms averaged from O1 are 
given, followed by typical waveforms from O2 for one 
subject. Time is recorded in milliseconds and 
amplitudes in microvolts. 

Accumulation of VEP segments can remove some 
of the noise, since the TL averaging technique remove 
the noise of opposite phase but this process doesn’t 
filter all unwanted frequencies from the signal. 

Figure 3 shows dyadic wavelet using coiflet 
analysis to decompose VEP signal into its EEG 
frequency bands Delta (0-4), Theta (4-8), Alpha (8-16), 
Beta  (16-31)  and  Gamma (31-63) Hz (Mohd Tumari 
et al., 2012). The wavelet dyadic filter bank is used to 
cancel unwanted signal (noise) and decompose the 
signal to its detailed frequency bands. 

The VEP response with coiflet wavelet 
decomposition is correlated mostly with the coefficients 
in the details d6-d7 (Fig. 4). In essence, to avoid the 
fluctuations related to the spontaneous EEG and to get 
the peaks of interest only, the wavelet coefficients that 
not correlated with the VEP is set to zero as shown in 
Fig. 4. 

PCA of 3 stages is also used to analyze VEP data. 
It is used as a technique to eliminate and denoise VEP 
signal after TL average. It is based on a fact of choosing 
the    principle   component   (highest   eigenvalue) and 
neglecting other components. In PCA, the selected 
component in the first stage is further analyzed in two 
different steps. In each step, the data is analyzed to 
extract two PCA and then the one with higher 
eigenvalue is selected (Sharmilakanna and Palaniappan, 
2005). Figure 5 shows the principle components of the 
signals in the third stage and the variance and 
eigenvalues of PCA are summarized in Table 1. 

By using PCA, it is possible to separate EEG noise 
from VEP signal using the fact that  the  EEG  subspace   

 

 
 

Fig. 3: Dyadic wavelet analysis of VEP signal using coiflet 5 for 8 levels 
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Table 1: PCA of VEP signal show the eigenvalue, the variance and 
cumulative 

PCA  Eigenvalue 
Percentage of 
variance (%) Cumulative (%) 

O1 PC 1 1.99507 99.75 99.75 
 PC 2 0.00493 0.25 100.00 
O2 PC 1 1.99852 99.93 99.93 
 PC 2 0.00148 0.07 100.00 

 
constitutes of principal components with eigenvalues 
below a certain threshold and eigenvalues with 
principal components above this threshold which 
represents the signal subspace. 

DISCUSSION 
 

WT and PCA are used to analyze the transient 
visual evoked potentials signals recorded 
experimentally from occipital lobe of brains timulated 
using checkerboard pattern as preferred by ISCEV 
standard (Odom et al., 2010). Figure 6a represents the 
TL averaging signals from two electrodes cite (O1 and 
O2). TL of 120 trails is averaged from reversal 
checkerboard pattern. Figure 6b shows the result of 
PCA of three stages. The principle component of the 
first  stage  is  further  analyzed  to  select  the  principle 

 

 
 

 
 

Fig. 4: Original and threshold wavelet denoising coefficient of VEP signals 
 

   
 
Fig. 5: Principle component analysis of VEP signals O1 and O2 computing eigenvectors and eigenvalue 
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                                      (b)                                              (b)                                                (c) 
 

Fig. 6: VEP signals; (a): Time locked signal; (b): with PCA; (c): with WT. Note removing high frequency noise from the signals 
 
Table 2: Summary of statistical analysis such as (mean, SD, SEM, p-value, variants and RMS), Signal to Noise Ratio (SNR) and root mean square analysis 

VEP signals  Mean S.D. 

Standard 
Error of 
Mean (SEM) t-Statistic p-value Variance 

Root Mean 
Square 
(RMS) 

Signal to 
Noise Ratio 
(SNR) (dB) 

O1 
Electrode 

TL 0.5158 0.1722 0.0077 66.7546 9.09157E-10 0.0296 0.5439 9.487 

 WT 0.5461 0.2059 0.0092 59.1053 5.55112E-17 0.0424 0.5834 31.256 
 PCA 0.5454 0.2023 0.0090 60.1072 5.55112E-17 0.0409 0.5815 19.080 
O2 
Electrode 

TL 0.4552 0.2277 0.0102 44.5615 1.04794E-9 0.0517 0.5093 9.798 

 WT 0.4943 0.2818 0.0126 39.1103 4.93217E-13 0.0791 0.5694 49.475 
 PCA 0.4893 0.2780 0.0124 39.2362 6.33771E-13 0.0771 0.5632 19.136 
 
component and similarly for the third stage. Multi 
stages PCA is applied on emulated VEP signal 
(Sharmilakanna and Palaniappan, 2005). The result 
show strong agreement with the simulation result since 
PCA can effectively separate VEP response from EEG 
background noise. Figure 6c shows the result of WT 
analysis of denoising VEP signals with removal of 
unwanted EEG background noise. Wavelet result shows 
the flexibility and ability of wavelet to analyze VEP 
signals signal and decompose it into different frequency 
bands. 

 
Statistical analysis: Is used to compare the data and to 
study the differences among analyzing techniques. T-
test is used to study the mean, Standard Deviation (SD), 
Standard Error of Mean (SEM), the variance, Root 
Mean Square (RMS) and p-value. Signal to Noise Ratio 
(SNR) are also computed to see the improvement in the 
signal. Table 2 summarizes the statistical analysis 
applied to VEP signals. As shown in Table 2, SD, 
RMS, SEM, SNR and the variance are higher in WT 
than PCA. Both of the analysis WT and PCA show 
improvement in the signal. Since the SNR is much 
increased, WT show higher SNR than PCA. Other 
statistical analysis also supports WT than PCA. 

CONCLUSION 
 

This study describes the method and comparison of 
principle component analysis and wavelet transform 
techniques to extract and denoise real experimental 
recorded transient VEP signals. This research discusses 
the ability of PCA and WT to process the signal as: 
 
• Decompose the signal to its detailed information 

and coefficients in such a way that it can break the 
signal to its frequency bands. 

• Denoise the signal and remove unwanted signal 
without distorting VEP signal. 

• Selecting of the principle component of VEP 
signals and separate it from EEG background. The 
statistical results show that wavelet analysis 
technique reduces RMS and improves SNR almost 
4 times to its original value. 
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